
The Security
Implications of
Compiled vs
Interpreted Code

Author: Grant Goodes

Convenient yes, but you are
engaging in risky behaviour:
Subtle-but-significant differences

1

Compiled Languages
Compiled languages such as C/C++ are designed to be processed by a toolchain (compilers, linkers, etc.)
which converts the human-readable source-code into sequences of low-level machine-code instructions
which can then be directly executed by the CPU. The low-level representation is sometimes referred to as a
Binary Executable, since the machine-code instructions can be expressed as a sequence of binary- or
hexadecimal-digits.

The compilation process can be quite complex, since the semantic distance between the concepts expressed
in the High-level source-code and the primitive instructions supported by typical CPUs is so large. The
compiler must be intimately tied to the specific CPU architecture (e.g. size of memory words, number and size
of CPU registers, available low-level operations on data, etc.). Compiled code intended for a specific CPU
cannot execute correctly on a different CPU, so is not portable at all.

Historically, compiled languages were the first to arrive on the scene (immediately after Assembly languages,
which are effectively just a slightly more convenient way to program directly in machine-code). High-level
programming languages, since they are intended to be compiled down to machine-code instructions, often
expose some aspects of the underlying HW and CPU architecture, such as requiring programmers to directly
manage memory allocations, utilize “raw” memory pointers, and understand the bit-level representation of
data objects such as signed- vs unsigned-integers.

Interpreted Languages
In contrast, Interpreted languages such as Java are either processed by a much simpler toolchain which
converts the human-readable source-code into a very high-level, abstract representation, typically referred to
as Byte-code, or in some cases not processed at all, remaining as textual source-code. The intention of this
approach is to permit the code to run on nearly any HW regardless of the underlying CPU architecture, which
provides for great portability of the application code. This portability is achieved via provision of a so-called
Virtual Machine (VM) that actually interprets the source-code or bytecode.

Interpreted languages, being newer creations, often strive to abstract away challenging concepts such as
memory management and representation of data objects. Almost no interpreted language even has the
concept of memory pointers, which makes them easier to use for the latest generation of programmers who
have less experience with the underlying HW and CPU architecture.

High-level Programming Languages:
Compiled vs. Interpreted
Applications are generally created as source-code (text) written in a High-level programming language which is easily
understood and maintained by human programmers. The vast majority of high-level programming languages can be
divided into two classes: Compiled vs. Interpreted.

2

Blurred Lines: JIT and AOT Optimization
The advantage of the Java bytecode representation is compactness and portability, but the downside is that the
bytecode instructions must be interpreted one-by-one, with a single bytecode usually expanding to several if not
hundreds of low-level machine code instructions, not to mention overhead due to the interpreter itself. As the
popularity of Java was initially for small applications on desktop computers, this was not at first a big problem. With
the increasing use of Java for very large applications (such as eBay) and then Google’s selection of Java to develop
applications for (relatively low-power) Android mobile devices, it became important to address this.

The first approach was JIT (Just In Time) optimization, which effectively cached the required machine code
instructions that would result from traditional interpretation of individual bytecode snippets, and if those snippets
occurred frequently (e.g. inside a loop) simply re-executed those already translated sequences. This saves the
processing overhead of the interpreter, and also allows for improved speedup due to improved cache-locality and
other low-level CPU effects, so can dramatically improve the performance of Java applications.

However, JITing suffered from one major problem which was that it required a “warm up” phase to populate the JIT
cache every time a new application ran for the first time, which meant that initially the application would run no faster
than an un-JITed application. The solution to this was AOT (Ahead Of Time) optimization/translation which as the
name suggests is performed before the application is run (either at install-time, or even at build-time). AOT identifies
suitable bytecode snippets to be pre-translated and cached, avoiding the startup latency of JIT.

With JIT or AOT, the Interpreted code is arguably now compiled code, so the line between compiler and interpreter is
blurred. However, the JIT’ed or AOT’ed code is still easily mapped back to the original bytecode sequences so many of
the same security concerns of traditional interpreted code still remain.

The Mobile Ecosystem: Two Paths
Apple based their Mobile platform on iOS (derived from macOS which in turn has roots in the UNIX-derived BSD) and is
designed to run “native” applications written in compiled languages ranging from C/C++ to Objective-C, and lately
Swift.

Conversely, Google based their Mobile platform on Android (again, a customer variant of Linux) which of course at the
system level executes binary code written in C/C++, but applications are expected to run inside the Dalvik Virtual
Machine, which supports the Java programming language. With Android, Java is considered to be the “native”
language, even though applications are not typically binary executables, but rather libraries of DEX bytecode created
directly from the Java source-code and designed to be interpreted by the Dalvik VM. Android applications may also
include truly native, compiled shared-libraries written in C/C++, but the fundamental basis of an application in Android
is always DEX bytecode.

Why do Enterprises choose one over the other?
Ultimately, the choice of a HLL for development comes down to a couple of important considerations, both of which
are related to cost.

The first is the industry-wide reality that there are simply far more developers skilled in Interpreted Languages than
there are for Compiled Languages, and that the relative scarcity of C/C++ programmers mean that they demand
higher salaries. Thus, it is far easier to staff a development team of Interpreted Language programmers.

Second, there is the very attractive possibility of covering both iOS & Android with one code-base when choosing one
of the Hybrid development frameworks such as React/Native and Cordova which are almost always based on
Interpreted Languages. This gives the double benefit of saving development costs on two sets of source-code while
using a lower-cost development team.

3

Inherent Risks of Interpreted Languages
The risks described in this section apply to Android (using Java for Application development) but also Hybrid
Frameworks which almost always involve the use of Interpreted Programming Languages such as Javascript (as
opposed to Compiled Programming Languages such as C/C++). Simply put, Interpreted Languages increase
(sometimes dramatically) the Attack Surface of the mobile application. It does this in several ways:

Vulnerable and Exposed Source-Code
Interpreted Languages are usually incorporated into the application either directly as text-based source-code (e.g.
Javascript) or as a form of high-level/abstract Bytecode that is trivially mapped back to source-code (e.g. C#). The
source-code or Bytecode is usually in the form of a “blob” of code that is present as one of the application’s resources,
and then interpreted on-the-fly by the Virtual Machine (VM). This provides the attacker with an extremely easy way to
attack the security of the application by simply modifying the “blob”, which allows for application logic to be modified
or removed and for injection of malicious code.

Vulnerable Abstract Virtual Machine
The other component of an Interpreted Language, beyond the source-code/Bytecode, is the abstract Virtual Machine
(VM) that interprets that code. The VM implements the abstract processor that the Interpreted Language is designed
to execute on. Unlike with binary code, which represents the entirety of the implementation (and thus all attacks must
involve that code), with interpreted code the VM itself is part of the attack surface. The application logic, its storage for
important data, and many virtual services and utilities, are all managed directly by the VM. The attacker can
effectively bypass any logic or security elements in the application code by exploiting the VM code. Since the VM is
typically highly focused on maximizing performance and minimizing size, it is rarely designed with these sorts of
attacks in mind. In fact, in many cases, the VM incorporates logging and debugging facilities which aid the developer,
but also arm the attacker with reverse-engineering and exploitation tools that are freely usable at runtime.

Weakened Application Sandbox
Both iOS and modern Android run application code in what is termed a “Sandbox”, which is designed to limit the
application to a subset of the powerful features of the operating system (so-called User vs. Root features) and also to
prevent one application from accessing resources of other applications. The application sandbox is provided and
enforced by the Operating System itself, and its security is generally pretty good, as Apple and Google have spent a lot
of effort enhancing that security over the years. However, with Interpreted Languages, the VM is in the role of the
Operating System to the application code, and as mentioned above, the primary design goal of the VM is maximizing
performance and minimizing size, not security. Thus, almost any VM is likely to have less secure enforcement of the
Application Sandbox, and this again represents an increase in the attack surface.

Software Obfuscation for the purpose of preventing
reverse engineering is a venerable technique used to
protect IP and to safeguard applications from
exploitation, fraud, etc. Software Obfuscation may be
applied at the Binary (native instruction) level, on some
form of Intermediate Representation (e.g. LLVM bitcode),
or on the original Source-Code itself. Which of these
approaches is chosen is generally a tradeoff between
convenience and sophistication of the resulting
obfuscation.

https://www.intertrust.com/products/application-shielding/
https://www.zimperium.com

Inherent Security of Compiled Languages
In this section, we will highlight some of the inherent security advantages of Compiled Languages such as C/C++.

Reduced Exposure of Semantics
The purpose of High-Level Languages (HLL) such as Javascript is to permit the human programmer to write down the
application logic (also called semantics) in a relatively straight-forward manner, at least somewhat close to written
natural languages such as English. The advantage of using an HLL is that the resulting code is easy to understand, even
by those who are seeing it for the first time. The benefit is code that is easier to maintain, with fewer bugs, and also
making it easier to modify and extend.

The source-code of compiled Languages such as C/C++ is only an intermediate representation of the application since
that source-code must first be compiled, resulting in assembly/machine-level code (binary/object-code) which is very
low-level, and can execute directly on the CPU. Compared with the original source-code, the Binary code is a
dramatically reduced lens through which to view the application code: Many high-level concepts such as Data
Structures, Object-oriented methods, and even simple constructs such as iteration, are essentially eliminated. Contrast
this with the original HLL source-code which, by design, richly expresses those semantics. We call this effect Semantic
Lowering, and once the semantics have been lowered to the low-level machine-code instructions, it is effectively
impossible to completely recover the original semantics of the high-level source-code, and only informed guesses may
be made.

Now consider the viewpoint of an attacker, wishing to understand the application logic with the goal of searching for
security vulnerabilities or even modifying application behaviour to achieve some malicious intent. If the attacker could
obtain a copy of the original source-code, they would have tremendous insight into the business logic, security
architecture, and other key aspects of the application’s design, all of which would make finding or exploiting
vulnerabilities much easier. Binary code analysis, modification and injection can be performed, but is much more
challenging than performing the same actions on the HLL source-code.

Increased Difficulty of Reverse Engineering
As alluded to in the previous section, the Semantic Lower effect of Compiled Code introduces challenges to any
attempts at Reverse Engineering the binary code, and thus makes identification of vulnerabilities and creation of
exploits much more difficult. There are actually two reasons for this: The shortage of skilled attackers, and the relative
scarcity of attack tooling.

First consider the expertise required for the attacker. The pool of experts for high-level source-code is effectively all
programmers familiar with that language, so is very large. Conversely, the low-level machine-code instructions that
make up binary executables are typically only understood by Assembly programmers, compiler-writers and other quite
exotic sorts of engineers. Thus, the number of attackers capable of reverse engineering applications written in Compiled
Languages is dramatically lower than the corresponding number of attackers for Interpreted Languages.

Second, consider the tooling and frameworks required to perform the reverse engineering. The tooling to analyze and
manipulate HLL source-code are extremely common and readily available, as they are effectively the same tools
needed by all programmers, typically making up the traditional IDE (Integrated Development Environment): Source code
visualizers, code-structure analyzers, debuggers, etc. Contrast this with the tooling to analyze and manipulate low-level
machine code. Binary analysis and debugging tools are much more specialized and require a great deal of skill to
understand and use.

These two effects are essentially a double whammy, since both the pool of experts in binary-code and the number of
tools to analyze and manipulate binary-code are small, and the few tools that do exist cannot be used by non-experts.

4

5

Recommended Best
Practices
The overall message about Interpreted vs. Compiled HLL
Programming Languages for development is clear:
Compiled Languages involve both reduced attack
surface and distinct advantages when it comes to
applying Code Protection technologies. Thus, it is
recommended to use a Compiled Language solution
code where possible (note that for iOS this is the
default). Where Interpreted solutions are required (e.g. a
Hybrid development framework is being used), attempt
to isolate security-sensitive code into a separate
module and implement that in Compiled code (note
that all Interpreted code solutions provide facilities for
interfacing to native code libraries).

More Possibilities for Code Protection
Application Code Protection can be achieved using a number of different approaches and technologies, but it is clear
that there are more and stronger options that apply only to Compiled Languages.

First, consider the common approach of Source-level Obfuscation. The purpose of Obfuscating the source-code is to
reduce the ability of attackers to analyze and exploit the semantics (business logic, security architecture, etc.)
exposed by the HLL code. Features such as Control-Flow Flattening, Constant Obfuscation, etc. have been well studied
and are easily applied by either open-source or commercial tools. Obfuscation can be performed for both Interpreted
and Compiled languages, but is relatively ineffective for Interpreted Languages such as Javascript. This is because
the source-code (or at least the high-level bytecode) of Interpreted Languages is in the hands of the attacker,
allowing them to apply open-source de-obfuscation tools and recover the original, human-readable code. With
Compiled Languages, only the resulting binary (machine code) is available for inspection, and the process of
compilation lowers the semantic content so much that automatic deobfuscation is very difficult or even impossible.

Second, with a Compiled Language binary, the option of direct obfuscation at binary-level exists, permitting
application of very powerful and hard-to-break transformations such as the creation of non-standard machine-code:
E.g. violations of standard Binary ABIs, non-standard calling-conventions and register usage, etc. Traditional binary-
analysis tools and decompilers can be broken entirely but such binary-level obfuscation, making it a very powerful
technique, and one that is ONLY available for Compiled Languages.

Finally, effective code-integrity solutions exist for binary-code, allowing the detection or even prevention of binary-
code modifications. This stops many dynamic analysis techniques such as debugging, hooking, etc., very challenging
for Compiled Language Applications. Notably, such code-integrity technology is either unavailable or not very
effective for Interpreted Languages.

Regardless of your choice, here are 5 Security Best
Practices to keep in mind:

1. Design with a good security architecture from the
beginning

• Especially concentrate on appropriate use of
cryptography, sensitive data isolation, etc.

2. Perform Code Reviews, with Security as one of the
important criteria for accepting code submissions

3. Use Code Vulnerability Scanners to detect Security
problems in the resulting application

• Not all interpreted languages can be scanned
at source-level, but Binary/Runtime scanners
do exist which can support even those
languages

4. Always include a RASP solution, as almost all analysis
and exploitation approaches rely on degraded
platform integrity and code- or data-modification,
which RASP is designed to prevent

5. Use a Runtime Threat Detection (SDK-based) solution
to detect anomalous or concerning behaviour at
runtime

6

Conclusion:
The Security vs. Convenience Tradeoff
Fundamentally, Interpreted Programming Languages have many significant advantages. Interpreted application
code is more portable, easier to write, with the additional benefit that there are far more programmers available
when staffing your development team. Additionally, Hybrid frameworks (e.g. React/Native, Cordova, etc.) using
Interpreted languages can allow a “write once, run everywhere” approach to application development, avoiding the
need for duplication of the programming effort to support both iOS and Android platforms. Thus, Interpreted
languages are often preferred, but it must be recognized that lower cost and convenience almost always have
security implications. As we have demonstrated, the reduced attack surface of binary-code and the superior code-
protection technologies available for use at the binary-level gives a clear advantage to development in Compiled
Languages. Despite the increased costs of Compiled Languages due to the relative scarcity of skilled programmers
and requirement for separate code-bases to support iOS & Android, the message is clear: When it comes to security,
the cost is worth it!

But I'm on Android...
Since Android requires Java for at least some of the application code, it is impossible to completely
avoid use of Interpreted code. However, Android apps can make use of pure binary shared-libraries
via the Java Native Interface (JNI). Thus the security best-practice for Android apps is to move
important business logic and security-related code to shared-libraries written in C/C++. It should
be noted that the JNI interface is itself vulnerable to analysis and exploitation so care must be taken
to protect the JNI interface, via such techniques as authenticated APIs, etc.

About the Author
Grant is Zimperium's Innovation Architect. Prior to
joining Zimperium, Grant held senior positions driving
mobile application security innovations at
organizations, including Guardsquare, Cloakware, Arxan
Technologies (now Digital.ai), and Irdeto. In his recent
role as Guardsquare’s Chief Scientist, Grant was
responsible for defining the future direction of their
mobile application security solutions. During his tenure
at Cloakware, Grant led the development of the kernel-
based Android Secure Platform technology. At Arxan,
he developed the company’s next-gen white-box
cryptography and encryption product.Grant Goodes

To learn more about how Zimperium can help, contact us today at

www.zimperium.com/contact-us/

https://www.zimperium.com/contact-us/

	Blank Page

