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Compiled Languages
Compiled languages such as C/C++ are designed to be processed by a toolchain (compilers, linkers, etc.) 
which converts the human-readable source-code into sequences of low-level machine-code instructions 
which can then be directly executed by the CPU.  The low-level representation is sometimes referred to as a 
Binary Executable, since the machine-code instructions can be expressed as a sequence of binary- or 
hexadecimal-digits.

The compilation process can be quite complex, since the semantic distance between the concepts expressed 
in the High-level source-code and the primitive instructions supported by typical CPUs is so large.  The 
compiler must be intimately tied to the specific CPU architecture (e.g. size of memory words, number and size 
of CPU registers, available low-level operations on data, etc.).  Compiled code intended for a specific CPU 
cannot execute correctly on a different CPU, so is not portable at all. 

Historically, compiled languages were the first to arrive on the scene (immediately after Assembly languages, 
which are effectively just a slightly more convenient way to program directly in machine-code).  High-level 
programming languages, since they are intended to be compiled down to machine-code instructions, often 
expose some aspects of the underlying HW and CPU architecture, such as requiring programmers to directly 
manage memory allocations, utilize “raw” memory pointers, and understand the bit-level representation of 
data objects such as signed- vs unsigned-integers.

Interpreted Languages
In contrast, Interpreted languages such as Java are either processed by a much simpler toolchain which 
converts the human-readable source-code into a very high-level, abstract representation, typically referred to 
as Byte-code, or in some cases not processed at all, remaining as textual source-code.  The intention of this 
approach is to permit the code to run on nearly any HW regardless of the underlying CPU architecture, which 
provides for great portability of the application code.  This portability is achieved via provision of a so-called 
Virtual Machine (VM) that actually interprets the source-code or bytecode.  

Interpreted languages, being newer creations, often strive to abstract away challenging concepts such as 
memory management and representation of data objects.  Almost no interpreted language even has the 
concept of memory pointers, which makes them easier to use for the latest generation of programmers who 
have less experience with the underlying HW and CPU architecture.

High-level Programming Languages:
Compiled vs. Interpreted
Applications are generally created as source-code (text) written in a High-level programming language which is easily 
understood and maintained by human programmers.  The vast majority of high-level programming languages can be 
divided into two classes: Compiled vs. Interpreted.  
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Blurred Lines: JIT and AOT Optimization
The advantage of the Java bytecode representation is compactness and portability, but the downside is that the 
bytecode instructions must be interpreted one-by-one, with a single bytecode usually expanding to several if not 
hundreds of low-level machine code instructions, not to mention overhead due to the interpreter itself.  As the 
popularity of Java was initially for small applications on desktop computers, this was not at first a big problem. With 
the increasing use of Java for very large applications (such as eBay) and then Google’s selection of Java to develop 
applications for (relatively low-power) Android mobile devices, it became important to address this.

The first approach was JIT (Just In Time) optimization, which effectively cached the required machine code 
instructions that would result from traditional interpretation of individual bytecode snippets, and if those snippets 
occurred frequently (e.g. inside a loop) simply re-executed those already translated sequences. This saves the 
processing overhead of the interpreter, and also allows for improved speedup due to improved cache-locality and 
other low-level CPU effects, so can dramatically improve the performance of Java applications.

However, JITing suffered from one major problem which was that it required a “warm up” phase to populate the JIT 
cache every time a new application ran for the first time, which meant that initially the application would run no faster 
than an un-JITed application.  The solution to this was AOT (Ahead Of Time) optimization/translation which as the 
name suggests is performed before the application is run (either at install-time, or even at build-time).  AOT identifies 
suitable bytecode snippets to be pre-translated and cached, avoiding the startup latency of JIT.

With JIT or AOT, the Interpreted code is arguably now compiled code, so the line between compiler and interpreter is 
blurred. However, the JIT’ed or AOT’ed code is still easily mapped back to the original bytecode sequences so many of 
the same security concerns of traditional interpreted code still remain.

The Mobile Ecosystem: Two Paths
Apple based their Mobile platform on iOS (derived from macOS which in turn has roots in the UNIX-derived BSD) and is 
designed to run “native” applications written in compiled languages ranging from C/C++ to Objective-C, and lately 
Swift.  

Conversely, Google based their Mobile platform on Android (again, a customer variant of Linux) which of course at the 
system level executes binary code written in C/C++, but applications are expected to run inside the Dalvik Virtual 
Machine, which supports the Java programming language. With Android, Java is considered to be the “native” 
language, even though applications are not typically binary executables, but rather libraries of DEX bytecode created 
directly from the Java source-code and designed to be interpreted by the Dalvik VM.  Android applications may also 
include truly native, compiled shared-libraries written in C/C++, but the fundamental basis of an application in Android 
is always DEX bytecode.

Why do Enterprises choose one over the other?
Ultimately, the choice of a HLL for development comes down to a couple of important considerations, both of which 
are related to cost.  

The first is the industry-wide reality that there are simply far more developers skilled in Interpreted Languages than 
there are for Compiled Languages, and that the relative scarcity of C/C++ programmers mean that they demand 
higher salaries.  Thus, it is far easier to staff a development team of Interpreted Language programmers.

Second, there is the very attractive possibility of covering both iOS & Android with one code-base when choosing one 
of the Hybrid development frameworks such as React/Native and Cordova which are almost always based on 
Interpreted Languages. This gives the double benefit of saving development costs on two sets of source-code while 
using a lower-cost development team.
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Inherent Risks of Interpreted Languages
The risks described in this section apply to Android (using Java for Application development) but also Hybrid 
Frameworks which almost always involve the use of Interpreted Programming Languages such as Javascript (as 
opposed to Compiled Programming Languages such as C/C++).  Simply put, Interpreted Languages increase 
(sometimes dramatically) the Attack Surface of the mobile application.  It does this in several ways:

Vulnerable and Exposed Source-Code
Interpreted Languages are usually incorporated into the application either directly as text-based source-code (e.g. 
Javascript) or as a form of high-level/abstract Bytecode that is trivially mapped back to source-code (e.g. C#).  The 
source-code or Bytecode is usually in the form of a “blob” of code that is present as one of the application’s resources, 
and then interpreted on-the-fly by the Virtual Machine (VM).  This provides the attacker with an extremely easy way to 
attack the security of the application by simply modifying the “blob”, which allows for application logic to be modified 
or removed and for injection of malicious code.

Vulnerable Abstract Virtual Machine
The other component of an Interpreted Language, beyond the source-code/Bytecode, is the abstract Virtual Machine 
(VM) that interprets that code.  The VM implements the abstract processor that the Interpreted Language is designed 
to execute on.  Unlike with binary code, which represents the entirety of the implementation (and thus all attacks must 
involve that code), with interpreted code the VM itself is part of the attack surface.  The application logic, its storage for 
important data, and many virtual services and utilities, are all managed directly by the VM.  The attacker can 
effectively bypass any logic or security elements in the application code by exploiting the VM code. Since the VM is 
typically highly focused on maximizing performance and minimizing size, it is rarely designed with these sorts of 
attacks in mind.  In fact, in many cases, the VM incorporates logging and debugging facilities which aid the developer, 
but also arm the attacker with reverse-engineering and exploitation tools that are freely usable at runtime.

Weakened Application Sandbox
Both iOS and modern Android run application code in what is termed a “Sandbox”, which is designed to limit the 
application to a subset of the powerful features of the operating system (so-called User vs. Root features) and also to 
prevent one application from accessing resources of other applications.  The application sandbox is provided and 
enforced by the Operating System itself, and its security is generally pretty good, as Apple and Google have spent a lot 
of effort enhancing that security over the years. However, with Interpreted Languages, the VM is in the role of the 
Operating System to the application code, and as mentioned above, the primary design goal of the VM is maximizing 
performance and minimizing size, not security.  Thus, almost any VM is likely to have less secure enforcement of the 
Application Sandbox, and this again represents an increase in the attack surface.

Software Obfuscation for the purpose of preventing 
reverse engineering is a venerable technique used to 
protect IP and to safeguard applications from 
exploitation, fraud, etc.  Software Obfuscation may be 
applied at the Binary (native instruction) level, on some 
form of Intermediate Representation (e.g. LLVM bitcode), 
or on the original Source-Code itself.  Which of these 
approaches is chosen is generally a tradeoff between 
convenience and sophistication of the resulting 
obfuscation.

https://www.intertrust.com/products/application-shielding/
https://www.zimperium.com


Inherent Security of Compiled Languages
In this section, we will highlight some of the inherent security advantages of Compiled Languages such as C/C++.

Reduced Exposure of Semantics
The purpose of High-Level Languages (HLL) such as Javascript is to permit the human programmer to write down the 
application logic (also called semantics) in a relatively straight-forward manner, at least somewhat close to written 
natural languages such as English.  The advantage of using an HLL is that the resulting code is easy to understand, even 
by those who are seeing it for the first time. The benefit is code that is easier to maintain, with fewer bugs, and also 
making it easier to modify and extend.

The source-code of compiled Languages such as C/C++ is only an intermediate representation of the application since 
that source-code must first be compiled, resulting in assembly/machine-level code (binary/object-code) which is very 
low-level, and can execute directly on the CPU. Compared with the original source-code, the Binary code is a 
dramatically reduced lens through which to view the application code: Many high-level concepts such as Data 
Structures, Object-oriented methods, and even simple constructs such as iteration, are essentially eliminated. Contrast 
this with the original HLL source-code which, by design, richly expresses those semantics. We call this effect Semantic 
Lowering, and once the semantics have been lowered to the low-level machine-code instructions, it is effectively 
impossible to completely recover the original semantics of the high-level source-code, and only informed guesses may 
be made.

Now consider the viewpoint of an attacker, wishing to understand the application logic with the goal of searching for 
security vulnerabilities or even modifying application behaviour to achieve some malicious intent. If the attacker could 
obtain a copy of the original source-code, they would have tremendous insight into the business logic, security 
architecture, and other key aspects of the application’s design, all of which would make finding or exploiting 
vulnerabilities much easier.  Binary code analysis, modification and injection can be performed, but is much more 
challenging than performing the same actions on the HLL source-code.  

Increased Difficulty of Reverse Engineering
As alluded to in the previous section, the Semantic Lower effect of Compiled Code introduces challenges to any 
attempts at Reverse Engineering the binary code, and thus makes identification of vulnerabilities and creation of 
exploits much more difficult.  There are actually two reasons for this: The shortage of skilled attackers, and the relative 
scarcity of attack tooling.

First consider the expertise required for the attacker. The pool of experts for high-level source-code is effectively all 
programmers familiar with that language, so is very large. Conversely, the low-level machine-code instructions that 
make up binary executables are typically only understood by Assembly programmers, compiler-writers and other quite 
exotic sorts of engineers.  Thus, the number of attackers capable of reverse engineering applications written in Compiled 
Languages is dramatically lower than the corresponding number of attackers for Interpreted Languages.

Second, consider the tooling and frameworks required to perform the reverse engineering. The tooling to analyze and 
manipulate HLL source-code are extremely common and readily available, as they are effectively the same tools 
needed by all programmers, typically making up the traditional IDE (Integrated Development Environment): Source code 
visualizers, code-structure analyzers, debuggers, etc.  Contrast this with the tooling to analyze and manipulate low-level 
machine code.  Binary analysis and debugging tools are much more specialized and require a great deal of skill to 
understand and use.

These two effects are essentially a double whammy, since both the pool of experts in binary-code and the number of 
tools to analyze and manipulate binary-code are small, and the few tools that do exist cannot be used by non-experts.
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Recommended Best 
Practices
The overall message about Interpreted vs. Compiled HLL 
Programming Languages for development is clear: 
Compiled Languages involve both reduced attack 
surface and distinct advantages when it comes to 
applying Code Protection technologies.  Thus, it is 
recommended to use a Compiled Language solution 
code where possible (note that for iOS this is the 
default). Where Interpreted solutions are required (e.g. a 
Hybrid development framework is being used), attempt 
to isolate security-sensitive code into a separate 
module and implement that in Compiled code (note 
that all Interpreted code solutions provide facilities for 
interfacing to native code libraries).

More Possibilities for Code Protection
Application Code Protection can be achieved using a number of different approaches and technologies, but it is clear 
that there are more and stronger options that apply only to Compiled Languages.

First, consider the common approach of Source-level Obfuscation.  The purpose of Obfuscating the source-code is to 
reduce the ability of attackers to analyze and exploit the semantics (business logic, security architecture, etc.) 
exposed by the HLL code.  Features such as Control-Flow Flattening, Constant Obfuscation, etc. have been well studied 
and are easily applied by either open-source or commercial tools. Obfuscation can be performed for both Interpreted 
and Compiled languages, but is relatively ineffective for Interpreted Languages such as Javascript.  This is because 
the source-code (or at least the high-level bytecode) of Interpreted Languages is in the hands of the attacker, 
allowing them to apply open-source de-obfuscation tools and recover the original, human-readable code.  With 
Compiled Languages, only the resulting binary (machine code) is available for inspection, and the process of 
compilation lowers the semantic content so much that automatic deobfuscation is very difficult or even impossible.

Second, with a Compiled Language binary, the option of direct obfuscation at binary-level exists, permitting 
application of very powerful and hard-to-break transformations such as the creation of non-standard machine-code: 
E.g. violations of standard Binary ABIs, non-standard calling-conventions and register usage, etc.  Traditional binary-
analysis tools and decompilers can be broken entirely but such binary-level obfuscation, making it a very powerful 
technique, and one that is ONLY available for Compiled Languages.

Finally,  effective code-integrity solutions exist for binary-code, allowing the detection or even prevention of binary-
code modifications.  This stops many dynamic analysis techniques such as debugging, hooking, etc., very challenging 
for Compiled Language Applications.  Notably, such code-integrity technology is either unavailable or not very 
effective for Interpreted Languages.

Regardless of your choice, here are 5 Security Best 
Practices to keep in mind:

1. Design with a good security architecture from the
beginning

• Especially concentrate on appropriate use of
cryptography, sensitive data isolation, etc.

2. Perform Code Reviews, with Security as one of the
important criteria for accepting code submissions

3. Use Code Vulnerability Scanners to detect Security
problems in the resulting application

• Not all interpreted languages can be scanned
at source-level, but Binary/Runtime scanners
do exist which can support even those
languages

4. Always include a RASP solution, as almost all analysis
and exploitation approaches rely on degraded
platform integrity and code- or data-modification,
which RASP is designed to prevent

5. Use a Runtime Threat Detection (SDK-based) solution
to detect anomalous or concerning behaviour at
runtime
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Conclusion:
The Security vs. Convenience Tradeoff
Fundamentally, Interpreted Programming Languages have many significant advantages. Interpreted application 
code is more portable, easier to write, with the additional benefit that there are far more programmers available 
when staffing your development team.  Additionally, Hybrid frameworks (e.g. React/Native, Cordova, etc.) using 
Interpreted languages can allow a “write once, run everywhere” approach to application development, avoiding the 
need for duplication of the programming effort to support both iOS and Android platforms. Thus, Interpreted 
languages are often preferred, but it must be recognized that lower cost and convenience almost always have 
security implications.  As we have demonstrated, the reduced attack surface of binary-code and the superior code-
protection technologies available for use at the binary-level gives a clear advantage to development in Compiled 
Languages.  Despite the increased costs of Compiled Languages due to the relative scarcity of skilled programmers 
and requirement for separate code-bases to support iOS & Android, the message is clear: When it comes to security, 
the cost is worth it!

But I'm on Android...
Since Android requires Java for at least some of the application code, it is impossible to completely 
avoid use of Interpreted code. However, Android apps can make use of pure binary shared-libraries 
via the Java Native Interface (JNI).  Thus the security best-practice for Android apps is to move 
important business logic and security-related code to shared-libraries written in C/C++.  It should 
be noted that the JNI interface is itself vulnerable to analysis and exploitation so care must be taken 
to protect the JNI interface, via such techniques as authenticated APIs, etc.
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